Autocatalytic plume pinch-off.
نویسندگان
چکیده
A localized source of buoyancy flux in a nonreactive fluid medium creates a plume. The flux can be provided by either heat, a compositional difference between the fluid comprising the plume and its surroundings, or a combination of both. For autocatalytic plumes produced by the iodate-arsenous acid reaction, however, buoyancy is produced along the entire reacting interface between the plume and its surroundings. Buoyancy production at the moving interface drives fluid motion, which in turn generates flow that advects the reaction front. As a consequence of this interplay between fluid flow and chemical reaction, autocatalytic plumes exhibit a rich dynamics during their ascent through the reactant medium. One of the more interesting dynamical features is the production of an accelerating vortical plume head that in certain cases pinches-off and detaches from the upwelling conduit. After pinch-off, a new plume head forms in the conduit below, and this can lead to multiple generations of plume heads for a single plume initiation. We investigated the pinch-off process using both experimentation and simulation. Experiments were performed using various concentrations of glycerol, in which it was found that repeated pinch-off occurs exclusively in a specific concentration range. Autocatalytic plume simulations revealed that pinch-off is triggered by the appearance of accelerating flow in the plume conduit.
منابع مشابه
Buoyant plumes and vortex rings in an autocatalytic chemical reaction.
Buoyant plumes, evolving free of boundary constraints, may develop well-defined mushroom-shaped heads. In conventional plumes, overturning flow in the head entrains less buoyant fluid from the surroundings as the head rises, robbing the plume of its driving force. We consider here a new type of plume in which the source of buoyancy is an autocatalytic chemical reaction. The reaction occurs at a...
متن کاملThe heads and tails of buoyant autocatalytic balls.
Buoyancy produced by autocatalytic reaction fronts can produce fluid flows that advect the front position, giving rise to interesting feedback between chemical and hydrodynamic effects. In this paper, we numerically investigate the evolution of autocatalytic iodate-arsenous acid reaction fronts initialized in spherical configurations. Deformation of these "autocatalytic balls" is driven by buoy...
متن کاملFluid pinch-off in superfluid and normal 4He.
We present frames from high-speed videos of the pinch-off of liquid 4He droplets. The temperature of the fluid droplets ranged from 1.33 K to 4.8 K, and the size of the drops was proportional to the temperature-dependent capillary length. We observed no qualitative difference between pinch-off in the normal and superfluid states. In both cases, the shape of the fluid in the final stages of pinc...
متن کاملScaling behavior of universal pinch-off in two-dimensional foam.
We study the power-law scaling behavior and pinch-off morphology of two-dimensional bubble rafts under tension. As a function of pulling speed, we observe two distinct pinch-off morphologies that have been observed in other fluid systems: long threads (LT) and double-cone (DC). At any given pulling speed, there is a nonzero probability of observing LT or DC, with the probability of observing LT...
متن کاملConduits of steady-state autocatalytic plumes.
Plumes are typically formed when a continuous source of buoyancy is supplied at a localized source. We studied laminar plumes where buoyancy is supplied by an autocatalytic chemical reaction: The iodate-arsenous acid (IAA) reaction. The nonlinear kinetics of the IAA reaction produces a sharp propagating front at which buoyancy is produced by exothermicity and compositional change. When the reac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 82 6 Pt 2 شماره
صفحات -
تاریخ انتشار 2010